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Abstract:  Analysis of data without a pre-knowledge of the distribution that describes data may lead to misleading or 

irrelevant result. Distribution fitting to data often lead to the selection of the best fitting distribution for data 

analysis. In this article, some existing distributions are fitted to Maternal Mortality Ratio (MMR) data. Using the 

best fitting distribution obtained as base distribution, generalized distributions having additional parameters are 

then derived and subsequently fitted to MMR to assess goodness of fit. Generalized distributions improved 

goodness of fit. 
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Introduction 

Goodness of fit test is one of the most fundamental hypothesis 

testing problems (Lehmann and Romano, 2008). The extent to 

which a hypothesized probability distribution can describe a 

sample of data can be assessed using goodness of fit test. 

Therefore for accurate and relevant data analysis results, 

fitting generalized distributions to data before use in order to 

assess goodness of fit is as important as their derivation. 

Tahir and Nadarajah (2015) in their study of generalized 

families of distributions discussed the exponentiated 

generalized families (Lehmann Alterntive 1 (LA1) and 

Lehmann Alternative 2 (LA2)) having additional parameter 

each. These generalized families are obtained from Lehmann 

Alternatives (Lehmann, 1953). 

Marshall and Olkin (1997) presented the method of deriving 

generalized distribution by parameter induction into an 

existing distribution. Gupta and Kundu (2009) also discussed 

the Power Transformed Method (PTM), another method of 

parameter induction into an existing base distribution. 

Let X be a base continuous random variable having the 

following functions; 

Probability Density Function denoted by ƒ )(x , Cumulative 

Distribution Function denoted by )( xF . If X is a lifetime 

random variable, then, the Survival Function is denoted by

)( xs , the Hazard Function is denoted by )( xh , and the 

Reversed Hazard Function is denoted by )( xr . 

For a generalized continuous random variable Y, obtained by 

introducing a parameter (c>0) to the distribution of the base 

random variable X, functions of Y obtainable from the 

generalized families presented by above authors are 

respectively summarized below;  

Lehmann type I family 

1)()()(  c
Y xFxcfxf  (1.1) 

c
Y xFxF )()(   (1.1a) 

c
Y xFxF )(1)(   (1.1b) 

11 ))(1()()()(   cc
Y xFxFxcfxh  (1.1c) 

1)()()(  xFxcfxrY
 (1.1d) 

Lehmann type II family 
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Y xFxcfxFxcfxf  (2.2) 
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Marshall-Olkin family 
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Power transformed family 

)()( 1 cc
Y xfcxxf   (2.4) 

)()( c
Y xFxF   (2.4a) 

)()(1)( cc
Y xFxFxF   (2.4b) 

)()( 1 cc
Y xhcxxh   (2.4c) 

)()( 1 cc
Y xrcxxr   (2.4d) 

 

Omekam and Adejumo (2017) generated families of 

generalized distributions by sequentially applying methods in 

permutations of five distinct parameter induction (including 

those from families mentioned above) taken two methods at a 

time. Among other generalized distributions derived by 

authors are those that are found in Permutations 4 and 10 

which may respectively be called Lehmann Type II-Power 

Transformed Family and Lehmann Type I-Power 

Transformed Family. Functions of these two generalized 

families with two additional parameters are represented below 

Given a base random variable X, let Y be a generalized 

continuous random variable obtained by introducing ashape 

parameter (c>0) to the distribution of the base random 

variable X, and let Z be another continuous variable belonging 

to a family of generalized distributions obtained by 

introducing another parameter(t>0) to Y.  
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Lehmann type II-power transformed family 
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Lehmann type I-power transformed family 
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Nadarajah and Kotz (2003) introduced Exponentiated Fretchet 

distribution having three parameters that generalized the two-

parameter Frechet distribution. Cordeiro et al. (2013) 

proposed a method of introducing two parameters to a 

continuous distribution and thereafter obtained some models 

from same method. Among the models obtained is the 

Exponentiated Generalized Frechet (EGF). Four of the special 

models obtained were fitted to four different real datasets and 

compared with those of three other sub-models. The results 

were in favour of proposed models based on Akaike 

Information Criterion (AIC), Consistent Akaike Information 

Criterion (CAIC), Bayesian Information Criterion (BIC), and 

likelihood ratio test. 

Krishna et al. (2013) introduced the Marshall-Olkin Extended 

Frechet distribution (MOEFR) with an additional parameter 

generalizing the two-parameter Frechet distribution. MOEFR 

distribution was compared with two-pararmeter Frechet 

distribution using a data set consisting of 72 observations of 

survival times of guinea pigs injected with different doses of 

tubercle bacilli. The good fit provided by MOEFR based on 

Kolmogorov-Smirnov (K-S) distances and associated P-

values, AIC, and BIC informed its recommendation as a 

competitive model to the Frechet distribution.  

 

Materials and Methods 

MMR is a measure of maternal mortality that measures 

maternal mortality as the number of maternal deaths per 

100,000 live births. 

Data collection 

Data on the number of maternal death and live birth were 

collected for fifty one countries listed in the appendix which 

includes twenty one developing countries for a period of 

eleven years (2004 to 2014). Country inclusion criterion was 

civil registration data characterization by Maternal Mortality 

Estimation Inter Agency Group (MMEIG). The goal of using 

the country inclusion criterion is to avoid using data with wide 

range of uncertainty. Forty two out of the fifty one countries 

included were countries whose civil registration data were 

characterized as complete, with good attribution of cause of 

death while seven were countries classified as lacking good 

complete registration data but where registration or other 

types of data are available. The remaining two countries 

(Cyprus and Malaysia) had no nationally representative data 

on maternal death but their live birth data for the years 

considered were complete. MMEIG estimates were used for 

the two countries. The study would have used a larger sample 

size but sample size was a function of criterion stated. 

Secondary data was used and the sources are given below: 

Number of maternal death: World Development Indicators 

(WDI) Number of live birth: Eurostat and United Nations 

Statistics Division (UNSD) 

Distribution fitting and generalization of distribution 

The shape of MMR data was ascertained using histogram plot. 

The shape revealed in the plot suggested plausible existing 

distributions that were then fitted to data. K-S goodness of fit 

test was used in determining the goodness of fit of plausible 

distributions and AIC was subsequently used to select the best 

model. The best fitted model was generalized to produce six 

generalized distributions. Goodness of fit test was then carried 

out for the four generalized distributions with one additional 

parameter and two generalized distributions with two 

additional parameters obtained from generalizing the best 

fitted model. Generalized distribution for MMR was finally 

selected from these six generalized distributions using K-S 

distances and AIC. Easy Fit and R software were employed. 

 

Results and Discussion 

Let the continuous random variable, MMR, be represented by 

X.  The functions of the distribution that describes X are given 

as follows: 

Probability Density Function denoted by ƒ )(x , Cumulative 

Distribution Function denoted by )( xF . If X is a lifetime 

random variable, then, the Survival Function is denoted by

)( xs , the Hazard Function is denoted by )( xh , and the 

Reversed Hazard Function is denoted by )( xr . 

Let Y be a generalized continuous random variable obtained 

by introducing a shape parameter (c>0) to the distribution of 

the base random variable X, and let Z be another continuous 

variable belonging to a family of generalized distributions 

with two additional shape parameters(c > 0 and t>0) also 

obtained from the distribution of X.  

The shape of MMR data is deduced from the histogram for X 

which will then suggest plausible existing distributions that 

will be subsequently fitted to data. Generalized distributions 

obtained for the best fitted existing distribution are then fitted 

to X. X is concluded to follow the generalized distribution 

with the best fit to data. 

Distribution fitting of some existing distributions to data 

 
Fig. 1: Histogram for MMR 
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Histogram shows a positive skew and unimodal shape. 

 

Table 1: Goodness of fit of some existing distributions to 

data 

Distribution 

Kolmogorov Smirnov AIC 

Statistic P-value Rank Statistic Rank 
Relative  

Likelihood 

Beta 0.15969 0.00000     

Burr 0.05183 0.09483 3 -8546.016 3 0.00021029 
Dagum 0.04357 0.23041 1 -8558.09 2 0.08803683 

Exponential 0.14186 0.00000     

Fatigue Life 0.12951 0.00000     
Frechet 0.05164 0.09693 2 -8562.95 1  

Gamma 0.29941 0.00000     

Gen. Gamma 0.19235 0.00000     
Inverse Gaussian 0.10194 0.00000     

Pareto 2 0.16234 0.00000     

Rayleigh 0.33499 0.00000     
Rice 0.50072 0.00000     

Weibull 0.15485 0.00000     

 

The best fitted distribution based on K-S statistics and 

associated P-values is the three parameter Dagum distribution 

with a P-value of 0.23041 while the two-parameter Frechet 

distribution is selected by AIC. The relative likelihood of 

Dagum distribution indicates that Dagum is 0.08803683 

probable as the Frechet to minimize information loss, 

therefore, giving a strong evidence for Frechet distribution as 

the best distribution for X. 

 

Generalization of the best fitted distribution 

The Frechet distribution 
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α, β > 0, ϰ > 0. α and β are shape and scale parameters, 

respectively 

 

Generalized Frechet distributions 

1. Lehmann Type I Frechet Distribution (LIFD) 

Substituting )( xf in (3.1) for )( xf and )( xF in (3.2) 

for )( xF in (1.1) 
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Substituting )( xF in (3.2) for )( xF in (1.1a) 
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Substituting )( xF in (3.2) for )( xF in (1.1b) 

c

y
x

xF


























exp1)(

  (3.8) 

 

 

 

Substituting )( xf in (3.1) for )( xf and )( xF in (3.2) for )( xF in (1.1c) 
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Substituting )( xf in (3.1) for )( xf and )( xF in (3.2) for )( xF in (1.1d) 
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2.  Lehmann Type II Frechet Distribution (LIIFD) 

Substituting )( xf in (3.1) for )( xf and )( xF in (3.3) for )( xF in (2.2) 
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Substituting )( xF in (3.3) for )( xF in (2.2a) 
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Substituting )( xF in (3.3) for )( xF in (2.2b) 
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Substituting )( xf in (3.1) for )( xf and )( xF in (3.3) for )( xF in (2.2c) 
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Substituting )( xf in (3.1) for )( xf and )( xF in (3.2) for )( xF in (2.2d) 
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3. Marshall-Olkin Frechet Distribution (MOFRD) 

Substituting )( xF in (3.2) for )( xF in (2.3) 
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Substituting )( xf in (3.1) for )( xf and )( xF in (3.2) for )( xF in (2.3a) 
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Substituting )( xF in (3.2) for )( xF and )( xF in (3.3) for )( xF in (2.2b) 
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


   (3.18) 

Substituting )( xh in (3.4) for )( xh and )( xF in (3.2) for )( xF in (2.3c) 

)])/(exp(1)[1(1

)])/(exp(1)[)/(exp()/(
)(

111









xc

xxx
xhy






    (3.19) 

Substituting )( xr in (3.5) for )( xr and )( xF in (3.2) for )( xF in (2.3d) 

)])/(exp(1)[1(1

)/(
)(

11









xc

xc
xry




    (3.20) 

4. Power Transformed Frechet Distribution (PTFD) 

Substituting )( xf in (3.1) for )( xf in (2.4) 










































cc

c
y

xx
cxxf exp)(

1
1

   (3.21) 

Substituting )( xF in (3.2) for )( xF in (2.4a) 


























cy

x
xF exp)(

   (3.22) 
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Substituting )( xF in (3.3) for )( xF in (2.4b) 


























cy

x
xF exp1)(

   (3.23) 

Substituting )( xh in (3.4) for )( xh in (2.4c) 

1
1

1 exp1exp)(

















































































ccc

c
y

xxx
cxxh

   (3.24) 

Substituting )( xr in (3.5) for )( xr in (2.4d) 

1
1)(




















c

c
y

x
cxxr

   (3.25) 

5. Lehmann Type II Power Transformed Frechet Distribution (LIIPTFD) 

Substituting )( xf in (3.1) for )( xf and )( xF in (3.3) for )( xF in (2.3) 

1111 )])/(exp(1)[)/(exp()/()(   tcccc
z xxxctxxf    (3.26) 

Substituting )( xF in (3.3) for )( xF in (2.3a) 

tc
z xxF )])/(exp(1[1)(     (3.27) 

Substituting )( xF in (3.3) for )( xF in (2.3b) 

tc
z xxF )])/(exp(1[)(     (3.28) 

Substituting )( xf in (3.1) for )( xf and )( xF in (3.3) for )( xF in (2.3c) 

1111 )])/(exp(1)[)/(exp()/()(     cccc
z xxxctxxh    (3.29) 

Substituting )( xf in (4.1) for )( xf and )( xF in (4.3) for )( xF in (2.3d) 

  tctcccc
z xxxxctxxr )])/(exp(1[1()])/(exp(1)[)/(exp()/()( 1111  

1  (3.30) 

6. Lehmann Type I-Power Transformed Frechet Distribution (LIPTFD) 

Substituting )( xf in (3.1) for )( xf and )( xF in (3.2) for )( xF in (2.4) 

1111 )])/()[exp()/(exp()/()(   tcccc
z xxxctxxf      (3.31) 

Substituting )( xF in (3.2) for )( xF in (2.4a) 

tc
z xxF ))/(exp()(     (3.32) 

Substituting )( xF in (3.2) for )( xF in (2.4b) 

tc
z xxF ))/(exp(1)(     (3.33) 

Substituting )( xf in (3.1) for )( xf and )( xF in (3.2) for )( xF in (2.4c) 

1111 ]))/(exp(1[))/(exp()/()(   tctccc
z xxxctxxh     (3.34) 

 

Substituting )( xr in (3.5) for )( xr in (2.4d) 

111 )/()(   cc
z xctxxr    (3.35) 

 

Distribution fitting of generalized distributions to data 

Table 2: Goodness of fit of generalized distributions to data 

Distribution 
Kolmogorov Smirnov AIC 

Statistic P-value Rank Statistic Rank Relative Likelihood 

Frechet 0.05164 0.09693 4 -8562.95 2 0.994018 

LIIFD 0.04726 0.1598379 1 -8561.582 3 0.501576 

MOFRD 0.04764 0.1534482 3 -8562.962 1  

PTFD 0.04741 0.1572908 2 -8561.572 4  

LIIPTFD 0.04726 0.1598379 1 -8559.582 5  

LIPTFD 0.04741 0.1572908 2 -8559.572 6  

LIFD 0.04741 0.1572908 2 -8561.572 4  
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The best fitted distribution based on K-S statistics and 

associated P-values is Lehmann Type II distribution with a P-

value of 0.1598379 while Marshall-Olkin Frechet distribution 

is selected by AIC. The relative likelihood of Frechet 

distribution indicates that Frechet distribution is 0.994018 

probable as MOFRD distribution to minimize information 

loss, therefore, MOFRD is selected as an alternative reference 

distribution to Frechet distribution for X. 

 

Conclusion 
Krishna et al. (2013) applied MOEFR to one data set and 

found it to be a competitive model to the Frechet. Cordeiro et 

al. (2013) applied special generalized models derived to 

different data sets andresults obtained revealed their suitability 

to data sets. The relative likelihood of the Frechet distribution 

obtained in this study led to the choice of MOFRD as an 

alternative reference distribution to the Frechet distribution for 

MMR. These results provide evidence for Marshall-Olkin 

Frechet distribution to perform as well as and even much 

better than the Frechet distribution. In general, results give 

evidence that generalized distribution often improve goodness 

of fit. More properties of derived generalized distributions 

need to be investigated and used in subsequent analyses. 
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APPENDIX 

List of Countries 

Austria, Azerbaijan, Belgium, Bulgaria, Bosnia & Herz., Belarus, Switzerland, Costa Rica, Cuba, Cyprus, Czech Republic, 

Germany, Denmark, Egypt Arab Rep., Spain, Estonia, Finland, France, United Kingdom, Greece, Hungary, Ireland, Israel, Italy, 

Japan, Kyrgyz Republic, Korea, Rep., Lithuania, Luxembourg, Latvia, Moldova, Maldives, Macedonia FYR, Montenegro, 

Mauritius, Malaysia, Netherlands, Norway, New Zealand, Poland, Portugal, Romania, Russian Fed., Singapore, Serbia, 

Suriname, Slovenia, Sweden, Turkey, Ukraine, United States. 
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